skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Korte, Meghan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Theory asserts larger brains facilitate behaviours that enhance fitness. Research has demonstrated that increased brain size improves cognition and survival. However, the majority of research has focused on cross‐species comparisons. Experiments that manipulate selection to investigate the connection between brain size, behaviour and fitness are needed.Trinidadian killifish (Anablepsoides hartii) live in communities with (high predation: HP) and without (killifish only: KO) predators. Predator absence is associated with high population densities, increased intraspecific competition and evolved larger brain sizes.We tested for evolutionary shifts in behaviour by subjecting second‐generation lab‐reared killifish to a mirror aggression assay. We also quantify selection on brain size and behaviour by transplanting wild HP killifish to KO sites and tracking individual fitness (growth rates) with a mark‐recapture design.Lab‐reared killifish from KO sites—specifically males—exhibited higher levels of aggression than HP killifish. In the transplant experiment, HP killifish exhibited strong increases in aggression following the introduction to KO sites. Increased brain size was correlated with increased growth in transplanted HP killifish, yet there was no association between brain size, aggression and growth.Our results indicate that declines in predation and increased competition favour increases in aggression but further research is needed to determine if and how brain size and behaviour are linked through natural selection. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. ABSTRACT It has long been recognized that the environment experienced by parents can influence the traits of offspring (i.e. ‘parental effects’). Much research has explored whether mothers respond to predictable shifts in environmental signals by modifying offspring phenotypes to best match future conditions. Many organisms experience conditions that theory predicts should favor the evolution of such ‘anticipatory parental effects’, but such predictions have received limited empirical support. ‘Condition transfer effects’ are an alternative to anticipatory effects that occur when the environment experienced by parents during development influences offspring fitness. Condition transfer effects occur when parents that experience high-quality conditions produce offspring that exhibit higher fitness irrespective of the environmental conditions in the offspring generation. Condition transfer effects are not driven by external signals but are instead a byproduct of past environmental quality. They are also likely adaptive but have received far less attention than anticipatory effects. Here, we review the generality of condition transfer effects and show that they are much more widespread than is currently appreciated. Condition transfer effects are observed across taxa and are commonly associated with experimental manipulations of resource conditions experienced by parents. Our Review calls for increased research into condition transfer effects when considering the role of parental effects in ecology and evolution. 
    more » « less